Existence of Large Solutions to Semilinear Elliptic Equations with Multiple Terms
نویسندگان
چکیده
We consider the semilinear elliptic equation 4u = p(x)uα + q(x)uβ on a domain Ω ⊆ Rn, n ≥ 3, where p and q are nonnegative continuous functions with the property that each of their zeroes is contained in a bounded domain Ωp or Ωq, respectively in Ω such that p is positive on the boundary of Ωp and q is positive on the boundary of Ωq. For Ω bounded, we show that there exists a nonnegative solution u such that u(x) −→ ∞ as x −→ ∂Ω if 0 < α ≤ β,β > 1, and that such a solution does not exist if 0 < α ≤ β ≤ 1. For Ω = Rn, we establish conditions on p and q to guarantee the existence of a nonnegative solution u satisfying u(x) −→∞ as |x| −→∞ for 0 < α ≤ β,β > 1, and for 0 < α ≤ β ≤ 1. For Ω = Rn and 0 < α ≤ β < 1, we also establish conditions on p and q for the existence and nonexistence of a solution u where u is bounded on Rn.
منابع مشابه
Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملOn the existence of multiple positive entire solutions for a class of quasilinear elliptic equations
Our goal is to establish the theorems of existence and multiple of positive entire solutions for a class quasilinear elliptic equations in RN with the Schauder-Tychonoff fixed point theorem as the principal tool. In many articles, the theorems of existence and multiple of positive entire solutions for a class semilinear elliptic equations are established. The results of the semilinear equations...
متن کامل$L^p$-existence of mild solutions of fractional differential equations in Banach space
We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work.
متن کاملSemilinear Elliptic Equations with Generalized Cubic Nonlinearities
A semilinear elliptic equation with generalized cubic nonlinearity is studied. Global bifurcation diagrams and the existence of multiple solutions are obtained and in certain cases, exact multiplicity is proved.
متن کاملLiouville type results for semilinear elliptic equations in unbounded domains
This paper is devoted to the study of some class of semilinear elliptic equations in the whole space: −aij(x)∂iju(x)− qi(x)∂iu(x) = f(x, u(x)), x ∈ R . The aim is to prove uniqueness of positive bounded solutions Liouville type theorems. Along the way, we establish also various existence results. We first derive a sufficient condition, directly expressed in terms of the coefficients of the line...
متن کاملSolutions of Semilinear Elliptic Equations with Asymptotic Linear Nonlinearity
In this paper, we consider some semilinear elliptic equations with asymptotic linear nonlinearity and show the existence, uniqueness, and asymptotic behavior of these solutions.
متن کامل